
Stat 534: formulae referenced in lecture, week 2: randomization and residuals

Permutation for simple study designs: e.g. comparing 2 groups or simple linear regression

• The procedure:

– Compute test statistic (e.g., drop in deviance) from observed data = To

– Randomly permute group labels to the observations, compute test statistic using
permuted labels

– Repeat above many times (1000, 10000) to get many Ti

– Calculate P[To more extreme than Ti], usually P[To ≥ Ti]

• Assumes null hypothesis that the two groups are identical in all respects

• Can be applied to simple linear regression, assumes slope = 0

• Can be applied to block designs by randomizing within the block

Permutation for more complicated models

• Examples:

– testing effect of factor A or factor B in a model with A + B (regression or ANOVA)

– testing interaction, i.e. A*B, in a factorial model, A + B + A*B

• Permuting labels doesn’t separate effects of each factor

• Want to allow A to have an effect, then test whether B has an effect

• Active statistical research area

• One approach that seems (where studied) to work well: Permute residuals

Residual permutation:

• Fit model, estimate residuals

• Generate permuted data that satisfies the null hypothesis you want to test

– by setting parameters associated with the null hypothesis to 0

– calculating predicted values under the null hypothesis

– permuting the residuals and generating the permuted data

• Example: testing interaction = 0

– Fit model Y ∼ A + B + A:B, and estimate residuals
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– Generate Ŷ0 assuming A:B = 0 by Ŷ0 = A + B

– New data set is Ŷ0 + permuted residuals

• Aside: If you generate Ŷ from full model, A + B + A:B, you’re doing a residual
bootstrap

– Very useful for confidence intervals when usual theory fails

• Assumption that makes residual permutation and residual bootstrap work:

– Residuals are exchangeable

– Essentially: all residuals have the same distribution

Ingredients for residuals, not all used for all residuals:

• yi: observed value for i’th observation

• ŷi: predicted value for i’th observation

• si: standard deviation of i’th observation, =
√

Var yi

• hii: leverage of the i’th observation. If yi changes, how much does ŷi change?
when hii close to 1, ŷi determined (essentially) only by the single observation at yi

• di: deviance contribution from the i’th observation

• D: deviance = 2(lnL− lnLS)) =
∑
di

lnL is the log likelihood a model fit to data.
lnLS is the log likelihood for a “saturated” model: has n parameters for n observations
and fits the data perfectly

• F (yi | θ): cumulative probability of yi with distribution F and parameters θ = P[Y
≤ yi ]

• F−(yi | θ): cumulative probability of yi − 1

Residuals from simpler to more complex:

• Usual residual
yi − ŷi

• “Simple” standardized residual
yi − ŷi
si

• Standardized residual = Pearson residual

yi − ŷi
si
√

1− hii
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• Deviance residual
sign(yi − ŷi)

√
di

• PIT residual = Dunn-Smyth residual = randomized quantile residual

uiF(yi | θ) + (1− ui)F−(yi | θ)

where ui ∼ U(0, 1), a uniform distribution between 0 and 1

Two examples of di:

• Normal distribution: di = (yi − ŷi)2

• Poisson distribution: di = 2
[
yi log(yi/λ̂i)− yi + λ̂i

]

Some points on these:

• Names are not consistently used: standardized and studentized defined multiple ways

• Logic behind Pearson residual is to divide by the sd of the residual

• Which leads to residuals with constant variance

• Deviance residuals from continuous data have a standard normal distribution (mean
= 0, sd 1) if model correct

• With discrete data, everything up to PIT residuals creates bands and can be very hard
to interpret for 0/1 data or counts close to 0. See graphs.

Properties of PIT residuals and some details:

• PIT residuals include a random component, ui, to smear between the band for yi and
the one “below” it

• PIT residuals, as defined above, are U(0, 1) when model correct, so centered at 0.5 and
ranging from 0 to 1

• Can make them more like typical residuals by applying a probit = inverse normal
transformation

• Transformed residuals are standard normal when model correct and no parameters
need to be estimated

• Estimated parameters tend to overfit small samples.

– Can “spread then out” by scaling by sample standard deviation of the residuals

– Improves performance in small samples, no effect in large samples
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